If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 4x3 + 0.28x2 + 0.0049x + -2E + -13 = 0 Reorder the terms: -13 + -2E + 0.0049x + 0.28x2 + 4x3 = 0 Solving -13 + -2E + 0.0049x + 0.28x2 + 4x3 = 0 Solving for variable 'E'. Move all terms containing E to the left, all other terms to the right. Add '13' to each side of the equation. -13 + -2E + 0.0049x + 0.28x2 + 13 + 4x3 = 0 + 13 Reorder the terms: -13 + 13 + -2E + 0.0049x + 0.28x2 + 4x3 = 0 + 13 Combine like terms: -13 + 13 = 0 0 + -2E + 0.0049x + 0.28x2 + 4x3 = 0 + 13 -2E + 0.0049x + 0.28x2 + 4x3 = 0 + 13 Combine like terms: 0 + 13 = 13 -2E + 0.0049x + 0.28x2 + 4x3 = 13 Add '-0.0049x' to each side of the equation. -2E + 0.0049x + 0.28x2 + -0.0049x + 4x3 = 13 + -0.0049x Reorder the terms: -2E + 0.0049x + -0.0049x + 0.28x2 + 4x3 = 13 + -0.0049x Combine like terms: 0.0049x + -0.0049x = 0.0000 -2E + 0.0000 + 0.28x2 + 4x3 = 13 + -0.0049x -2E + 0.28x2 + 4x3 = 13 + -0.0049x Add '-0.28x2' to each side of the equation. -2E + 0.28x2 + -0.28x2 + 4x3 = 13 + -0.0049x + -0.28x2 Combine like terms: 0.28x2 + -0.28x2 = 0.00 -2E + 0.00 + 4x3 = 13 + -0.0049x + -0.28x2 -2E + 4x3 = 13 + -0.0049x + -0.28x2 Add '-4x3' to each side of the equation. -2E + 4x3 + -4x3 = 13 + -0.0049x + -0.28x2 + -4x3 Combine like terms: 4x3 + -4x3 = 0 -2E + 0 = 13 + -0.0049x + -0.28x2 + -4x3 -2E = 13 + -0.0049x + -0.28x2 + -4x3 Divide each side by '-2'. E = -6.5 + 0.00245x + 0.14x2 + 2x3 Simplifying E = -6.5 + 0.00245x + 0.14x2 + 2x3
| (n-2)180=162n | | (15x-8y)=(6x+14y) | | 0.5(x+7-1)=2x | | 14x+4=-8+2x | | 2x-17=x-1+4 | | 1/7y6 | | 225(-150-3.5x)=2000 | | 3n-7(3n+6)= | | -4(4y-7)+3(3y+6)= | | (6x+14y)=52 | | -6=6x-12 | | 225(150-3.5x)=2000 | | x+3=21-x | | 3(n-6)-5=n-4 | | 1/3-2=1 | | 16x-5=4+7x | | 12+2y=10y-36 | | 18-5/4x=3 | | 1/2y=4x-6 | | 200(150-3.5x)=-2000 | | 3y-3=6y+17 | | g+2(y-5)=2y+2 | | x+214=45 | | 5y=25x+20 | | 9b-5=58 | | 1/12x-8=-8 | | n+3n-2n-2=20 | | 14+3a=-2a+1 | | x=37+2.38 | | 21=3x+2y | | 5y+3x-11y-6x=30 | | 6x+9=5x+20 |